Analysis of Non-Ionic Surfactant Triton X-100 Using Hydrophilic Interaction Liquid Chromatography and Mass Spectrometry.
Evelin FarsangVioletta GaálOttó HorváthErzsébet BárdosKrisztián HorváthPublished in: Molecules (Basel, Switzerland) (2019)
It is well known that surfactants increase the solubility of hydrophobic organic compounds and cause adverse environmental effects. The removal of these compounds from the contaminated soil or ground-water is particularly difficult due to their water soluble feature. In this work, an ultra-high performance hydrophilic interaction liquid chromatographic method was developed for the separation of oligomers of Triton X-100 octylphenol-polyethoxylate non-ionic surfactant. Liquid chromatography-mass spectrometry (LC-MS) was used to identify the Triton X-100 compounds. There was a 44 mass unit difference between two adjacent peaks that is the molar mass of one ethylene oxide group (⁻CH 2 CH 2 O⁻). A quadratic retention model was applied for the estimation of retention of the examined non-ionic surfactant and the optimization of gradient elution conditions. The optimized method was suitable for the baseline separation of 28 Triton X-100 oligomers in five minutes.
Keyphrases
- liquid chromatography
- mass spectrometry
- water soluble
- ionic liquid
- high resolution mass spectrometry
- simultaneous determination
- tandem mass spectrometry
- room temperature
- high resolution
- high performance liquid chromatography
- gas chromatography
- solid phase extraction
- solid state
- capillary electrophoresis
- machine learning
- deep learning
- human health
- aqueous solution
- drug induced
- ms ms