Login / Signup

Copper-catalyzed atroposelective synthesis of C-O axially chiral compounds enabled by chiral 1,8-naphthyridine based ligands.

Lei DaiXueting ZhouJiami GuoQingqin HuangYixin Lu
Published in: Chemical science (2024)
Axially chiral molecular scaffolds are widely present in therapeutic agents, natural products, catalysts, and advanced materials. The construction of such molecules has garnered significant attention from academia and industry. The catalytic asymmetric synthesis of axially chiral biaryls, along with other non-biaryl axially chiral molecules, has been extensively explored in the past decade. However, the atroposelective synthesis of C-O axial chirality remains largely underdeveloped. Herein, we document a copper-catalyzed atroposelective construction of C-O axially chiral compounds using novel 1,8-naphthyridine-based chiral ligands. Mechanistic investigations have provided good evidence in support of a mechanism involving synergistic interplay between a desymmetrization reaction and kinetic resolution process. The method described in this study holds great significance for the atroposelective synthesis of C-O axially chiral compounds, with promising applications in organic chemistry. The utilization of 1,8-naphthyridine-based ligands in copper catalysis is anticipated to find broad applications in asymmetric copper(i)-catalyzed azide-alkyne cycloadditions (CuAACs) and beyond.
Keyphrases
  • capillary electrophoresis
  • ionic liquid
  • solid state