Login / Signup

Interface Engineering of Heterogeneous CeO2-CoO Nanofibers with Rich Oxygen Vacancies for Enhanced Electrocatalytic Oxygen Evolution Performance.

Weimo LiLusi ZhaoCe WangXiaofeng LuWei Chen
Published in: ACS applied materials & interfaces (2021)
The development of highly efficient and cheap electrocatalysts for the oxygen evolution reaction (OER) is highly desirable in typical water-splitting electrolyzers to achieve renewable energy production, yet it still remains a huge challenge. Herein, we have presented a simple procedure to construct a new nanofibrous hybrid structure with the interface connecting the surface of CeO2 and CoO as a high-performance electrocatalyst toward the OER through an electrospinning-calcination-reduction process. The resultant CeO2-CoO nanofibers exhibit excellent electrocatalytic properties with a small overpotential of 296 mV at 10 mA cm-2 for the OER, which is superior to many previously reported nonprecious metal-based and commercial RuO2 catalysts. Furthermore, the prepared CeO2-CoO nanofibers display remarkable long-term stability, which can be maintained for 130 h with nearly no attenuation of OER activity in an alkaline electrolyte. A combined experimental and theoretical investigation reveals that the excellent OER properties of CeO2-CoO nanofibers are due to the unique interfacial architecture between CeO2 and CoO, where abundant oxygen vacancies can be generated due to the incomplete matching of atomic positions of two parts, leading to the formation of many low-coordinated Co sites with high OER catalytic activity. This research provides a practical and promising opportunity for the application of heterostructured nonprecious metal oxide catalysts for high-efficiency electrochemical water oxidation.
Keyphrases
  • highly efficient
  • high efficiency
  • metal organic framework
  • ionic liquid
  • gold nanoparticles
  • electron transfer
  • minimally invasive
  • nitric oxide
  • molecular dynamics simulations
  • transition metal