Login / Signup

The complete genome sequence of a second alphabaculovirus from the true armyworm, Mythimna unipuncta: implications for baculovirus phylogeny and host specificity.

Robert L HarrisonJoseph D MoweryGary R BauchanDavid A TheilmannMartin A Erlandson
Published in: Virus genes (2018)
The Mythimna unipuncta nucleopolyhedrovirus isolate KY310 (MyunNPV-KY310) is an alphabaculovirus isolated from a true armyworm (Mythimna unipuncta) population in Kentucky, USA. Occlusion bodies of this virus were examined by electron microscopy and the genome sequence was determined by 454 pyrosequencing. MyunNPV-KY310 occlusion bodies consisted of irregular polyhedra measuring 0.8-1.8 µm in diameter and containing multiple virions, with one to six nucleocapsids per virion. The genome sequence was determined to be 156,647 bp with a nucleotide distribution of 43.9% G+C. 152 ORFs and six homologous repeat (hr) regions were annotated for the sequence, including the 38 core genes of family Baculoviridae and an additional group of 26 conserved alphabaculovirus genes. BLAST queries and phylogenetic inference confirmed that MyunNPV-KY310 is most closely related to the alphabaculovirus Leucania separata nucleopolyhedrovirus isolate AH1, which infects Mythimna separata. In contrast, MyunNPV-KY310 did not exhibit a close relationship with Mythimna unipuncta nucleopolyhedrovirus isolate #7, an alphabaculovirus from the same host species. MyunNPV-KY310 lacks the gp64 envelope glycoprotein, which is a characteristic of group II alphabaculoviruses. However, this virus and five other alphabaculoviruses lacking gp64 are placed outside the group I and group II clades in core gene phylogenies, further demonstrating that viruses of genus Alphabaculovirus do not occur in two monophyletic clades. Potential instances of MyunNPV-KY310 ORFs arising by horizontal transfer were detected. Although there are now genome sequences of four different baculoviruses from M. unipuncta, comparison of their genome sequences provides little insight into the genetic basis for their host specificity.
Keyphrases
  • genome wide
  • dna methylation
  • copy number
  • electron microscopy
  • genome wide identification
  • transcription factor
  • magnetic resonance
  • single cell
  • risk assessment
  • human health
  • optical coherence tomography
  • rare case