Login / Signup

One-pot synthesis of pillar[5]quinone-amine polymer coated silica as stationary phase for high-performance liquid chromatography.

Zicheng LuYuling HuZenghui XieGongke Li
Published in: Journal of separation science (2023)
To expand the application of pillararene in chromatographic separation, we designed and fabricated a pillar[5]quinone-amine polymer coated silica through quinone-amine reaction by facile one-pot synthesis method, which was applied as a stationary phase for high-performance liquid chromatography. Separation of hydrophobic compounds, hydrophilic compounds, halogenated aromatic compounds, and 11 aromatic positional isomers was achieved successfully in this stationary phase. Reverse-phase separation mode and hydrophilic-interaction separation mode were proved to exist, indicating the potential application of the mix-mode stationary phase. Studies of chromatographic retention behavior and molecular simulation showed that multiple interactions might play an important role in the separation process, including hydrophobic interaction, hydrogen-bonding interaction, aromatic π-π interaction, electron donor-acceptor interaction, and host-guest interaction. Column repeatability and stability were tested, which showed relative standard deviations of retention time less than 0.2% for continuous 11 injections, and the durability relative standard deviations of retention time were less than 0.91% after 90 days. This novel design strategy would broaden the application of pillararene-based covalent organic polymer in chromatography and separation science.
Keyphrases