Login / Signup

Functionalized Graphene Quantum Dot Modification of Yolk-Shell NiO Microspheres for Superior Lithium Storage.

Xiaojie YinHengqiao ChenChuanwei ZhiWeiwei SunLi-Ping LvYong Wang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2018)
Yolk-shell NiO microspheres are modified by two types of functionalized graphene quantum dots (denoted as NiO/GQDs) via a facile solvothermal treatment. The modification of GQDs on the surface of NiO greatly boosts the stability of the NiO/GQD electrode during long-term cycling. Specifically, the NiO with carboxyl-functionalized GQDs (NiO/GQDsCOOH) exhibits better performances than NiO with amino-functionalized GQDs (NiO/GQDsNH2 ). It delivers a capacity of ≈1081 mAh g-1 (NiO contribution: ≈1182 mAh g-1 ) after 250 cycles at 0.1 A g-1 . In comparison, NiO/GQDsNH2 electrode holds ≈834 mAh g-1 of capacity, while the bald NiO exhibits an obvious decline in capacity with ≈396 mAh g-1 retained after cycling. Except for the yolk-shell and mesoporous merits, the superior performances of the NiO/GQD electrode are mainly ascribed to the assistance of GQDs. The GQD modification can support as a buffer alleviating the volume change, improve the electronic conductivity, and act as a reservoir for electrolytes to facilitate the transportation of Li+ . Moreover, the enrichment of carboxyl/amino groups on GQDs can further donate more active sites for the diffusion of Li+ and facilitate the electrochemical redox kinetics of the electrode, thus together leading to the superior lithium storage performance.
Keyphrases
  • quantum dots
  • solid state
  • molecularly imprinted
  • carbon nanotubes
  • gold nanoparticles
  • sensitive detection
  • high resolution
  • solid phase extraction