Login / Signup

Effect of Revtech thermal processing on volatile organic compounds and chemical characteristics of split yellow pea (Pisum sativum L.) flour.

Ronak FahmiDonna RylandElaine SopiwnykLinda MalcolmsonShiva Shariati-IevariApril McElreaVeronique BarthetHeather BlewettMichel Aliani
Published in: Journal of food science (2021)
Yellow pea (Pisumsativum L.) is an economically rich source of nutrients with health-promoting effects. However, the consumption of pea ingredients is minimal due to their off-flavor characteristics. The present study investigated the effect of Revtech heat treatment on the chemical profile and volatile compounds in split yellow pea flour. Revtech treatment (RT) was applied at 140°C with a residence time of 4 min in dry condition (RT 0%) and in the presence of 10% steam (RT 10%). Both thermal treatments resulted in a significant reduction (p < 0.05) in lipoxygenase activity and the concentration of key beany-related odors such as heptanal, (E)-2-heptenal, 1-octen-3-ol, octanal, and (E)-2-octenal. In addition, RT 10% resulted in a significant reduction in pentanal, 1-penten-3-ol, hexanal, and 1-hexanol compared to untreated flour. The content of known precursors of lipoxygenase such as linoleic and linolenic acids was found in higher concentrations in heat-treated flours, indicating the efficacy of Revtech technology in minimizing the degradation of polyunsaturated fatty acids. No significant changes in the amino acid composition or the 29 selected phenolic compounds in pea flours were observed with Revtech processing except for two compounds, caffeic acid and gallocatechin, which were found at higher concentrations in RT 0%. PRACTICAL APPLICATION: Thermal processing of split yellow pea flours at 140°C using Revtech technology successfully decreased the concentrations of volatile compounds responsible for beany off-flavor while improving the nutritional quality of studied yellow pea flours. These results provide valuable information to the food industry for developing novel pulse-based products with enhanced sensory characteristics.
Keyphrases