Demarcating antioxidant response against aluminum induced oxidative stress in Westiellopsis prolifica Janet 1941.
Biswajita PradhanSrimanta PatraSairendri MaharanaChhandashree BeheraSoumya Ranjan DashMrutyunjay JenaPublished in: International journal of phytoremediation (2020)
Aluminum metal pollution is considered as a primary limiting factor that reduced crop yield in South Asian subtropical country like India. In national context, Odisha contributes around more than 40% of total ore availability. Moreover, industrial mining and smelting aid are major concern for aluminum metal toxicity in territorial vicinity affecting the soil fertility, ecosystem and human health through food chain. The aluminum metal accumulation limits the soil fertility by antagonistic regulation of photosynthetic and nitrogen fixing microbiota. The increasing concern regarding aluminum pollution enterprise critical investigations for their bioremediation in contamination sites. In this notion, the current study was hypothesized to decrypt the rate limiting factors, their explicit mode of action and intracellular detoxification in a cyanobacterium, i.e., Westiellopsis prolifica isolated from ash pond of NALCO (National Aluminum Company Limited), Angul, Odisha. In the experimental setup, treatment with different concentrations of AlCl3 (0-0.1 mM) was marked a decline in the growth of the strain due to the adverse regulation of photosynthetic pigments. However, the enforcement of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), guaiacol peroxidase (GPX) and glutathione reductase (GR) was critical for sustaining strain viability under oxidative imbalance. The observation of an increase in the antioxidant enzyme and MDA content was evident to sustain strain viability under such oxidative imbalance. The outcome of the anticipated study was apparent to demonstrate a colossal interlink between Al mediated induction of oxidative stress and their cellular detoxification via intracellular antioxidant enzymes and removal of H2O2 accumulation in cyanobacterium, W. prolifica. Statement of novelty Aluminum metal toxicity renders growth of Westiellopsis prolifica via affecting photosynthesis associated pigments. Westiellopsis prolifica deploys antioxidant defense enzymes to combat against aluminum mediated oxidative upset. Intracellular antioxidant enzymes provoke cellular survival of Westiellopsis prolifica under excessive uptake of aluminum in contaminated habitats.
Keyphrases
- oxidative stress
- human health
- risk assessment
- heavy metals
- oxide nanoparticles
- climate change
- hydrogen peroxide
- anti inflammatory
- dna damage
- ischemia reperfusion injury
- particulate matter
- nitric oxide
- induced apoptosis
- quality improvement
- drinking water
- air pollution
- health risk assessment
- wastewater treatment
- free survival
- heat shock
- diffusion weighted imaging
- weight loss
- combination therapy