Login / Signup

The CCB-ID approach to tree species mapping with airborne imaging spectroscopy.

Christopher B Anderson
Published in: PeerJ (2018)
CCB-ID accurately classified tree species using NEON data, reporting the best scores among participants. However, it failed to overcome several species mapping challenges like precisely identifying rare species. Key takeaways include (1) selecting models using metrics beyond accuracy (e.g., recall) could improve rare species predictions, (2) within-genus trait variation may drive spectral separability, precluding efforts to distinguish between functionally convergent species, (3) outlier removal and data resampling can exacerbate class imbalance problems, and should be carefully implemented, (4) PCA transformation greatly improved model results, and (5) targeted feature selection could further improve species classification models. CCB-ID is open source, designed for use with NEON data, and available to support species mapping efforts.
Keyphrases