Synergistic Photothermal and Photodynamic Therapy for Effective Implant-Related Bacterial Infection Elimination and Biofilm Disruption Using Cu9S8 Nanoparticles.
Wanshun WangXiaohang ChengJiawei LiaoZefeng LinLingling ChenDandan LiuTao ZhangLihua LiYao LuHong XiaPublished in: ACS biomaterials science & engineering (2019)
Implant-related bacterial infections are one of the most common but tricky problems in orthopedic clinics because the formation of biofilms inhibits the penetration of antibiotics to kill bacteria effectively; thus, a new strategy is urgently needed. Antibacterial nanomaterials [e.g., copper (Cu)-based nanoparticles (NPs)] combined with near-infrared (NIR) irradiation show enhanced antibacterial activity against clinical bacteria. However, their antibacterial efficiency toward implant-related infections and against biofilm formation remains unclear. Here, unique polyethylene glycol-modified Cu9S8 NPs with good biocompatibility were synthesized. We found that the Cu9S8 NPs exhibited high photothermal performance and could increase the generation of reactive oxygen species under NIR irradiation (808 nm, 1 W cm-2). The Cu9S8 NPs with NIR irradiation successfully destroyed the bacterial structure, resulting in the death of the clinically derived Staphylococcus aureus growing on titanium (Ti) plates. Moreover, this excellent antibacterial activity was indicated to have a synergistic effect with photothermal therapy (PTT) and photodynamic therapy (PDT) by comparison to Cu9S8 with heating treatment in a water bath with similar temperature changes compared to NIR + Cu9S8. Finally, the biofilm formation on the Ti plates was effectively disrupted by NIR + Cu9S8 treatment, while Cu9S8 with thermal treatment showed a mild impact. Hence, Cu9S8 NP-based PTT and PDT can provide a promising approach to eliminating implant-related bacteria and disrupting bacterial biofilms.
Keyphrases
- photodynamic therapy
- biofilm formation
- staphylococcus aureus
- fluorescence imaging
- candida albicans
- pseudomonas aeruginosa
- aqueous solution
- metal organic framework
- escherichia coli
- drug release
- soft tissue
- mental health
- drug delivery
- fluorescent probe
- oxide nanoparticles
- radiation induced
- silver nanoparticles
- drug induced
- clinical evaluation
- replacement therapy