Login / Signup

CRISPRi-Mediated Silencing of Burkholderia O-Linked Glycosylation Systems Enables the Depletion of Glycosylation Yet Results in Modest Proteome Impacts.

Jessica M LewisNichollas E Scott
Published in: Journal of proteome research (2023)
The process of O-linked protein glycosylation is highly conserved across the Burkholderia genus and mediated by the oligosaccharyltransferase PglL. While our understanding of Burkholderia glycoproteomes has increased in recent years, little is known about how Burkholderia species respond to modulations in glycosylation. Utilizing CRISPR interference (CRISPRi), we explored the impact of silencing of O-linked glycosylation across four species of Burkholderia ; Burkholderia cenocepacia K56-2, Burkholderia diffusa MSMB375, Burkholderia multivorans ATCC17616, and Burkholderia thailandensis E264. Proteomic and glycoproteomic analyses revealed that while CRISPRi enabled inducible silencing of PglL, this did not abolish glycosylation, nor recapitulate phenotypes such as proteome changes or alterations in motility that are associated with glycosylation null strains, despite inhibition of glycosylation by nearly 90%. Importantly, this work also demonstrated that CRISPRi induction with high levels of rhamnose leads to extensive impacts on the Burkholderia proteomes, which without appropriate controls mask the impacts specifically driven by CRISPRi guides. Combined, this work revealed that while CRISPRi allows the modulation of O-linked glycosylation with reductions up to 90% at a phenotypic and proteome levels, Burkholderia appears to demonstrate a robust tolerance to fluctuations in glycosylation capacity.
Keyphrases
  • escherichia coli
  • single cell
  • staphylococcus aureus
  • gene expression
  • amino acid