Platinum nanoparticles induced genotoxicity and apoptotic activity in human normal and cancer hepatic cells via oxidative stress-mediated Bax/Bcl-2 and caspase-3 expression.
Mohammed H A AlmarzougDaoud AliSaud AlarifiSaad AlkahtaniAbdullah M AlhadheqPublished in: Environmental toxicology (2020)
Platinum nanoparticles (PtNPs) attract much attention due to their excellent biocompatibility and catalytic properties, but their toxic effects on normal (CHANG) and cancerous (HuH-7) human liver cells are meagre. The cytotoxic and apoptotic effects of PtNPs (average size, 3 nm) were determined in CHANG and HuH-7 cells. After treating these cells were with PtNPs (10, 50, 100, 200, and 300 μg/mL) for 24 and 48 hours, we observed dose- and time-dependent cytotoxicity, as evaluated by using (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide, a tetrazole) (MTT) and neutral red uptake (NRU) assays. The production of reactive oxygen species (ROS) was increased in both cells after treatment with the above dose of PtNPs for 24 and 48 hours. Determination of morphological changes of cells, chromosome condensation, mitochondrial membrane potential, and caspase-3 assays showed that PtNPs induce cytotoxicity and apoptosis in CHANG and HuH-7 cells by altering the cell morphology and density, increasing cell population in apoptosis, and causing chromosome condensation. Furthermore, we have studied fragmentation of DNA using alkaline single cell gel electrophoresis and expression of apoptotic genes by real-time PCR (RT-PCR). The percentage of DNA fragmentation was more at 300 μg/mL for 48 hours in both cells, but slightly more fragmentation was found in HuH-7 relative to CHANG cells. Considering all of the above parameters, PtNPs elicited cytotoxicity on CHANG and HuH-7 cells by blocking cell proliferation and inducing apoptosis. Thus this study may be useful in in vitro laboratory studies using cell lines for screening the genotoxic and apoptotic potential of nanoparticles.
Keyphrases
- induced apoptosis
- cell cycle arrest
- cell death
- oxidative stress
- endoplasmic reticulum stress
- cell proliferation
- single cell
- pi k akt
- signaling pathway
- stem cells
- reactive oxygen species
- endothelial cells
- dna damage
- squamous cell carcinoma
- mesenchymal stem cells
- young adults
- gene expression
- ischemia reperfusion injury
- photodynamic therapy
- mass spectrometry
- real time pcr
- circulating tumor
- wound healing
- solid phase extraction
- tandem mass spectrometry