Lanthanum-Based Metal-Organic Frameworks for Specific Detection of Sudan Virus RNA Conservative Sequences down to Single-Base Mismatch.
Shui-Ping YangWei ZhaoPei-Pei HuKe-Yang WuZhi-Hong JiangLi-Ping BaiMin-Min LiJin-Xiang ChenPublished in: Inorganic chemistry (2017)
Reactions of La(NO3)3·6H2O with the polar, tritopic quaternized carboxylate ligands N-carboxymethyl-3,5-dicarboxylpyridinium bromide (H3CmdcpBr) and N-(4-carboxybenzyl)-3,5-dicarboxylpyridinium bromide (H3CbdcpBr) afford two water-stable metal-organic frameworks (MOFs) of {[La4(Cmdcp)6(H2O)9]}n (1, 3D) and {[La2(Cbdcp)3(H2O)10]}n (2, 2D). MOFs 1 and 2 absorb the carboxyfluorescein (FAM)-tagged probe DNA (P-DNA) and quench the fluorescence of FAM via a photoinduced electron transfer (PET) process. The nonemissive P-DNA@MOF hybrids thus formed in turn function as sensing platforms to distinguish conservative linear, single-stranded RNA sequences of Sudan virus with high selectivity and low detection limits of 112 and 67 pM, respectively (at a signal-to-noise ratio of 3). These hybrids also exhibit high specificity and discriminate down to single-base mismatch RNA sequences.