Login / Signup

Gas Sensing Performance and Mechanism of CuO(p)-WO3(n) Composites to H2S Gas.

Fang PengYan SunWeiwei YuYue LuJiaming HaoRui CongJichao ShiMeiying GeNing Dai
Published in: Nanomaterials (Basel, Switzerland) (2020)
In this work, the compositional optimization in copper oxide/tungsten trioxide (CuO/WO3) composites was systematically studied for hydrogen sulfide (H2S) sensing. The response of CuO/WO3 composites changes from p-type to n-type as the CuO content decreases. Furthermore, the p-type response weakens while the n-type response strengthens as the Cu/W molar ratio decreases from 1:0 to 1:10. The optimal Cu/W molar ratio is 1:10, at which the sensor presents the ultrahigh n-type response of 1.19 × 105 to 20 ppm H2S gas at 40 °C. Once the temperature rises from 40 °C to 250 °C, the CuO/WO3 (1:1) sensor presents the p-n response transformation, and the CuO/WO3 (1:1.5) sensor changes from no response to n-type response, because the increased temperature facilitates the Cu-S bonds break and weakens the p-type CuO contribution to the total response, such that the CuS bond decomposition by a thermal effect was verified by a Raman analysis. In addition, with a decrease in CuO content, the CuO is transformed from partly to completely converting to CuS, causing the resistance of CuO to decrease from increasing and, hence, a weakening mode of p-CuO and n-WO3 to the total response turns to a synergistic mode to it.
Keyphrases
  • visible light
  • room temperature