Login / Signup

Endosomal-dependent mitophagy coordinates mitochondrial nucleoid and mtDNA elimination.

Ayesha SenJulia BoixDavid Pla-Martin
Published in: Autophagy (2023)
Mitophagy and its variants are considered important salvage pathways to remove dysfunctional mitochondria. Non-canonical mitophagy, independent of autophagosome formation and including endosomal-dependent mitophagy, operate upon specific injury. In a recent paper, we describe a new mechanism where, upon mtDNA damage, mitochondrial nucleoids are eliminated via an endosomal-mitophagy pathway. Using proximity proteomics, we identified the proteins required for elimination of mutated mitochondrial nucleoids from the mitochondrial matrix. Among them, ATAD3 and SAMM50 control cristae architecture and nucleoid interaction, necessary for mtDNA extraction. In the mitochondrial outer membrane, SAMM50 coordinates with the retromer protein VPS35 to sequester mtDNA in endosomes and guide them towards elimination, thus avoiding the activation of an exacerbated immune response. Here, we summarize our findings and examine how this newly described pathway contributes to our understanding of mtDNA quality control.
Keyphrases
  • copy number
  • oxidative stress
  • mitochondrial dna
  • immune response
  • quality control
  • nlrp inflammasome
  • mass spectrometry
  • genome wide
  • dna methylation
  • small molecule
  • toll like receptor
  • amino acid