Harnessing ChatGPT and GPT-4 for evaluating the rheumatology questions of the Spanish access exam to specialized medical training.
Alfredo Madrid GarciaZulema Rosales-RosadoDalifer Freites-NuñezInés Pérez-SancristóbalEsperanza Pato-CourChamaida Plasencia-RodriguezLuis Cabeza-OsorioLydia Abasolo-AlcázarLeticia LeonBenjamín Fernández GutiérrezLuis Rodriguez-RodriguezPublished in: Scientific reports (2023)
The emergence of large language models (LLM) with remarkable performance such as ChatGPT and GPT-4, has led to an unprecedented uptake in the population. One of their most promising and studied applications concerns education due to their ability to understand and generate human-like text, creating a multitude of opportunities for enhancing educational practices and outcomes. The objective of this study is twofold: to assess the accuracy of ChatGPT/GPT-4 in answering rheumatology questions from the access exam to specialized medical training in Spain (MIR), and to evaluate the medical reasoning followed by these LLM to answer those questions. A dataset, RheumaMIR, of 145 rheumatology-related questions, extracted from the exams held between 2010 and 2023, was created for that purpose, used as a prompt for the LLM, and was publicly distributed. Six rheumatologists with clinical and teaching experience evaluated the clinical reasoning of the chatbots using a 5-point Likert scale and their degree of agreement was analyzed. The association between variables that could influence the models' accuracy (i.e., year of the exam question, disease addressed, type of question and genre) was studied. ChatGPT demonstrated a high level of performance in both accuracy, 66.43%, and clinical reasoning, median (Q1-Q3), 4.5 (2.33-4.67). However, GPT-4 showed better performance with an accuracy score of 93.71% and a median clinical reasoning value of 4.67 (4.5-4.83). These findings suggest that LLM may serve as valuable tools in rheumatology education, aiding in exam preparation and supplementing traditional teaching methods.