Login / Signup

Quasi-solid-state highly stretchable circular knitted MnO 2 @CNT supercapacitor.

Taegyu ParkYongwoo JangJong Woo ParkHyunsoo KimSeon Jeong Kim
Published in: RSC advances (2020)
Flexible and stretchable fiber supercapacitors have been progressively improved for wearable electronic devices. However, they should be further improved with respect to stretchable range and stable electrochemical performance during dynamic movement when considering the tensile range for wearable applications. Here, we report a quasi-solid-state circular knitted MnO 2 @CNT supercapacitor with high tensile range. To fabricate this, CNT fibers were knitted into a circular shape using a knitting machine then subsequently electrochemically deposited by a pseudocapacitive material, MnO 2 . Consequently, the knitted MnO 2 @CNT fiber supercapacitors were structurally 100% stretchable, and their energy storage performance remained stable during knitted capacitor stretching of up to 100%. Maximum linear capacitance and area capacitance are considerably large (321.08 mF cm -1 , 511.28 mF cm -2 ). In addition, the supercapacitor showed negligible loss of capacitance after 10 000 repeated charge/discharge cycles and dynamic stretching cycle testing. Furthermore, we also provided double-walled knitted MnO 2 @CNT supercapacitors by symmetrically inserting one knitted supercapacitor into another. The double-walled supercapacitor also exhibited a stable stretchability of up to 100% without loss of capacitance. Therefore, this highly stretchable fiber-type supercapacitor could be utilized for energy storage in wearable devices.
Keyphrases
  • solid state
  • heart rate
  • reduced graphene oxide
  • liquid chromatography
  • label free