Login / Signup

Interaction between rice bran albumin and epigallocatechin gallate and their physicochemical analysis.

Rui YangYuqian LiuJingjing XuWenting ShangXiao YuYongjin WangChris BlanchardZhongkai Zhou
Published in: Food science and biotechnology (2018)
Epigallocatechin gallate (EGCG) is sensitive to heat thus its application in food industry is limited. In this work, rice bran albumin protein (RAP) was used as a carrier for EGCG. RAP-EGCG complexes (RAPE) were prepared with the binding number n of 0.0505:1 (EGCG: RAP, w/w) and binding constant K of (0.74 ± 0.002) × 104 M-1, which suggests that hydrogen bond/van der Waals forces played important roles in such binding. FTIR analysis demonstrated that EGCG could induce the secondary structure changes of RAP above the ratio of 1.92:1 (EGCG:RAP, w/w). Dynamic light scattering and scanning electron microscope results showed that EGCG could trigger RAP association. Furthermore, the EGCG stability in RAPE was significantly improved than that of free EGCG in 10-60 °C. The antioxidant ability of EGCG in RAPE was partially retained. These findings prove that RAP is a potential carrier for polyphenols and is beneficial for mechanism investigation between protein and polyphenols.
Keyphrases
  • oxidative stress
  • dna binding
  • risk assessment
  • human health
  • heat stress
  • data analysis