Login / Signup

Recording single- and multi-unit neuronal action potentials from the surface of the dorsal root ganglion.

Ahmed I KashkoushRobert A GauntLee E FisherTim M BrunsDouglas J Weber
Published in: Scientific reports (2019)
The dorsal root ganglia (DRG) contain cell bodies of primary afferent neurons, which are frequently studied by recording extracellularly with penetrating microelectrodes inserted into the DRG. We aimed to isolate single- and multi-unit activity from primary afferents in the lumbar DRG using non-penetrating electrode arrays and to characterize the relationship of that activity with limb position and movement. The left sixth and seventh lumbar DRG (L6-L7) were instrumented with penetrating and non-penetrating electrode arrays to record neural activity during passive hindlimb movement in 7 anesthetized cats. We found that the non-penetrating arrays could record both multi-unit and well-isolated single-unit activity from the surface of the DRG, although with smaller signal to noise ratios (SNRs) compared to penetrating electrodes. Across all recorded units, the median SNR was 1.1 for non-penetrating electrodes and 1.6 for penetrating electrodes. Although the non-penetrating arrays were not anchored to the DRG or surrounding tissues, the spike amplitudes did not change (<1% change from baseline spike amplitude) when the limb was moved passively over a limited range of motion (~20 degrees at the hip). Units of various sensory fiber types were recorded, with 20% of units identified as primary muscle spindles, 37% as secondary muscle spindles, and 24% as cutaneous afferents. Our study suggests that non-penetrating electrode arrays can record modulated single- and multi-unit neural activity of various sensory fiber types from the DRG surface.
Keyphrases
  • spinal cord
  • skeletal muscle
  • carbon nanotubes
  • high density
  • solid state
  • spinal cord injury
  • cell therapy
  • blood brain barrier
  • optic nerve