Login / Signup

Volume-regulated Cl- current: contributions of distinct Cl- channels and localized Ca2+ signals.

Ya-Ni LiuHuiran ZhangHongchao MenYuwei DuZiqian XiaoFan ZhangDongyang HuangXiaona DuNikita GamperHailin Zhang
Published in: American journal of physiology. Cell physiology (2019)
The swelling-activated chloride current (ICl,swell) is induced when a cell swells and plays a central role in maintaining cell volume in response to osmotic stress. The major contributor of ICl,swell is the volume-regulated anion channel (VRAC). Leucine-rich repeat containing 8A (LRRC8A; SWELL1) was recently identified as an essential component of VRAC, but the mechanisms of VRAC activation are still largely unknown; moreover, other Cl- channels, such as anoctamin 1 (ANO1), were also suggested to contribute to ICl,swell. In this present study, we investigated the roles of LRRC8A and ANO1 in activation of ICl,swell; we also explored the role of intracellular Ca2+ in ICl,swell activation. We used a CRISPR/Cas9 gene editing approach, electrophysiology, live fluorescent imaging, selective pharmacology, and other approaches to show that both LRRC8A and ANO1 can be activated by cell swelling in HEK293 cells. Yet, both channels contribute biophysically and pharmacologically distinct components to ICl,swell, with LRRC8A being the major component. Cell swelling induced oscillatory Ca2+ transients, and these Ca2+ signals were required to activate both the LRRC8A- and ANO1-dependent components of ICl,swell. Both ICl,swell components required localized rather than global Ca2+ for activation. Interestingly, while intracellular Ca2+ was necessary and sufficient to activate ANO1, it was necessary but not sufficient to activate LRRC8A-mediated currents. Finally, Ca2+ transients linked to the ICl,swell activation were mediated by the G protein-coupled receptor-independent PLC isoforms.
Keyphrases
  • single cell
  • cell therapy
  • crispr cas
  • high resolution
  • mass spectrometry
  • diabetic rats
  • oxidative stress
  • quantum dots
  • reactive oxygen species
  • cell proliferation
  • atomic force microscopy
  • fluorescence imaging