Transition metal-catalyzed arylation of unstrained C-C single bonds.
Yang LongWuxin ZhouQiang LiXiangge ZhouPublished in: Organic & biomolecular chemistry (2021)
Carbon-carbon bond activation is one of the most challenging and important research areas in organic chemistry. Selective C-C bond activation of unstrained substrates is difficult to achieve owing to its inert nature and competitive side reactions, but the ubiquitous presence of C-C bonds in organic molecules makes this transformation attractive and of vital importance. Moreover, transition metal-catalyzed arylation of unstrained C-C single bonds can realize the cleavage of old C-C bonds and introduce important aryl groups into the carbon chain to construct new C-C bonds at the same time, providing a powerful and straightforward method to reconstruct the skeleton of the molecules. In recent years, considerable progress has been made in the area of direct arylation of C-C bonds, and β-C elimination or oxidative addition strategies play key roles in these transformations. This review summarizes recent achievements of transition metal-catalyzed arylation of unstrained C-C bonds, demonstrated by various kinds of substrates including alcohol, nitrile and carbonyl compounds, and each example is detailed by its corresponding mechanism, catalytic system and scope of the substrate.
Keyphrases