Login / Signup

Unraveling the strain tuning mechanism of interlayer excitons in WSe 2 /MoSe 2 heterostructure.

Anping GeXun GeLiaoxin SunXinle LuLei MaXinchao ZhaoBimu YaoXin ZhangTao ZhangWenji JingXiaohao ZhouXuechu ShenWei Lu
Published in: Nanotechnology (2024)
Atomically thin transition metal dichalcogenides (TMDs) exhibit rich excitonic physics, due to reduced dielectric screening and strong Coulomb interactions. Especially, some attractive topics in modern condensed matter physics, such as correlated insulator, superconductivity, topological excitons bands, are recently reported in stacking two monolayer (ML) TMDs. Here, we clearly reveal the tuning mechanism of tensile strain on interlayer excitons (IEXs) and intralayer excitons (IAXs) in WSe 2 /MoSe 2 heterostructure (HS) at low temperature. We utilize the cryogenic tensile strain platform to stretch the HS, and measure by micro-photoluminescence ( μ -PL). The PL peaks redshifts of IEXs and IAXs in WSe 2 /MoSe 2 HS under tensile strain are well observed. The first-principles calculations by using density functional theory reveals the PL peaks redshifts of IEXs and IAXs origin from bandgap shrinkage. The calculation results also show the Mo-4d states dominating conduction band minimum shifts of the ML MoSe 2 plays a dominant role in the redshifts of IEXs. This work provides new insights into understanding the tuning mechanism of tensile strain on IEXs and IAXs in two-dimensional (2D) HS, and paves a way to the development of flexible optoelectronic devices based on 2D materials.
Keyphrases
  • density functional theory
  • molecular dynamics
  • transition metal
  • quantum dots
  • single cell
  • solar cells