Composition-Dependent Aspect Ratio and Photoconductivity of Ternary (BixSb1-x)2S3 Nanorods.
Junli WangHongsong YuTingting WangYajie QiaoYing FengKangmin ChenPublished in: ACS applied materials & interfaces (2018)
The chemical composition, size and shape, and surface engineering play key roles in the performance of electronic, optoelectronic, and energy devices. V2VI3 (V = Sb, Bi; VI = S, Se) group materials are actively studied in these fields. In this paper, we introduce a colloidal method to synthesize uniform ternary (BixSb1-x)2S3 (0 < x < 1) nanorods. These nanorods show composition-dependent aspect ratios, enabling their composition, size, and shape control by varying Bi/Sb precursor ratios. It is found that the surface passivation by various thiols (L-SH) efficiently enhances the photoconductivity and optical responsive capability of (BixSb1-x)2S3 nanorods when used as active materials in indium tin oxide (ITO)/(BixSb1-x)2S3/ITO optoelectronic devices. Meanwhile, the increase of Sb content causes a gradual deterioration of photoconductivity of thiol-passivated nanorods. We propose that the thiol passivation is able to reduce the number of S vacancies, which act as the recombination centers (trapped states) for photogenerated electrons and holes, and thus boosts the carrier transport in (BixSb1-x)2S3 nanorods, and in particular that the composition-related conductivity deterioration is attributed to the increase of unpassivated S vacancies and surface oxidation due to the rise of Sb content.