Login / Signup

Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity.

Saikat DasBo WangYe CaoMyung Rae ChoYeong Jae ShinSang Mo YangLingfei WangMinu KimSergei V KalininLong-Qing ChenTae Won Noh
Published in: Nature communications (2017)
Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. The ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.The properties of complex oxides such as strontium titanate are strongly affected by the presence and distribution of oxygen vacancies. Here, the authors demonstrate that a scanning probe microscope tip can be used to manipulate vacancies by the flexoelectric effect.
Keyphrases