Login / Signup

Toxic effects of Solanum xanthocarpum Sch &Wendle against Helicoverpa armigera (Hub.), Culex quinquefasciatus (Say.) and Eisenia fetida (Savigny, 1826).

Kathirvelu BaskarJeevanantham AnanthiSavarimuthu Ignacimuthu
Published in: Environmental science and pollution research international (2017)
Many commercially available agro and household chemicals are used as pesticides, repellents, and growth inhibitors against insect pests. The repeated uses of these chemicals against insect pests have caused the development of resistance in them; they also cause ill effects on nontarget organisms. The present study was aimed to evaluate the antifeedant, larvicidal, pupicidal, and biochemical effects of the solvent extracts of Solanum xanthocarpum against third instar larvae of Helicoverpa armigera. Hexane, chloroform and ethyl acetate extracts were subjected to phytochemical analysis. The results revealed the presence of terpenoids, flavonoid, and quinone. Maximum antifeedant activity of 72.30% was recorded in chloroform extract followed by hexane (69.02%) and ethyl acetate (57.40%) extracts against H. armigera. Chloroform extracts of S. xanthocarpum showed more than 60% larvicidal and pupicidal activity against H. armigera. The effective chloroform extract was fractionated with increasing polarity of solvent system (hexane, chloroform, and ethyl acetate extracts). Based on the TLC profile, nine major fractions were isolated. The fourth fraction showed higher antifeedant, larvicidal, and pupicidal activity against H. armigera. The effective fraction reduced the hemolymph and gut protein concentration in a concentration-dependent manner (r 2 0.99). The effective fraction 4 showed 100% larvicidal activity at 500 ppm concentration with LC50 value of 227.95 ppm. The fourth fraction did not show any toxic symptom or mortality of earthworm. Based on these results, this effective fraction could be used in the development of a pesticide formulation to control insect.
Keyphrases
  • aedes aegypti
  • zika virus
  • ionic liquid
  • risk assessment
  • oxidative stress
  • drug delivery
  • small cell lung cancer
  • type diabetes
  • single cell
  • coronary artery disease
  • data analysis
  • brain metastases
  • patient reported