A Microfluidic Transistor for Liquid Signal Processing.
Kaustav A GopinathanAvanish MishraBaris R MutluJon F EddMehmet TonerPublished in: bioRxiv : the preprint server for biology (2023)
Microfluidics have enabled significant advances in molecular biology 1-3 , synthetic chemistry 4,5 , diagnostics 6,7 , and tissue engineering 8 . However, there has long been a critical need in the field to manipulate fluids and suspended matter with the precision, modularity, and scalability of electronic circuits 9-11 . Just as the electronic transistor enabled unprecedented advances in the control of electricity on an electronic chip, a microfluidic analogue to the transistor could enable improvements in the complex, scalable control of reagents, droplets, and single cells on an autonomous microfluidic chip. Prior works on creating a microfluidic analogue to the electronic transistor 12-14 could not replicate the transistor's saturation behavior, which is crucial to perform analog amplification 15 and is fundamental to modern circuit design 16 . Here we exploit the fluidic phenomenon of flow-limitation 17 to develop a microfluidic element with flow-pressure characteristics completely analogous to the current-voltage characteristics of the electronic transistor. As this microfluidic transistor successfully replicates all of the key operating regimes of the electronic transistor (linear, cut-off and saturation), we are able to directly translate a variety of fundamental electronic circuit designs into the fluidic domain, including the amplifier, regulator, level shifter, logic gate, and latch. Finally, we demonstrate a "smart" particle dispenser that senses single suspended particles, performs liquid signal processing, and accordingly controls the movement of said particles in a purely fluidic system without electronics. By leveraging the vast repertoire of electronic circuit design, microfluidic transistor-based circuits are easy to integrate at scale, eliminate the need for external flow control, and enable uniquely complex liquid signal processing and single-particle manipulation for the next generation of chemical, biological, and clinical platforms.