Login / Signup

Filamentous active matter: Band formation, bending, buckling, and defects.

Gerard A VliegenthartArvind RavichandranMarisol RipollThorsten AuthGerhard Gompper
Published in: Science advances (2020)
Motor proteins drive persistent motion and self-organization of cytoskeletal filaments. However, state-of-the-art microscopy techniques and continuum modeling approaches focus on large length and time scales. Here, we perform component-based computer simulations of polar filaments and molecular motors linking microscopic interactions and activity to self-organization and dynamics from the filament level up to the mesoscopic domain level. Dynamic filament cross-linking and sliding and excluded-volume interactions promote formation of bundles at small densities and of active polar nematics at high densities. A buckling-type instability sets the size of polar domains and the density of topological defects. We predict a universal scaling of the active diffusion coefficient and the domain size with activity, and its dependence on parameters like motor concentration and filament persistence length. Our results provide a microscopic understanding of cytoplasmic streaming in cells and help to develop design strategies for novel engineered active materials.
Keyphrases
  • induced apoptosis
  • single molecule
  • high resolution
  • cell cycle arrest
  • computed tomography
  • high throughput
  • mass spectrometry
  • oxidative stress
  • cell death