A Carboniferous synapsid with caniniform teeth and a reappraisal of mandibular size-shape heterodonty in the origin of mammals.
Adam K HuttenlockerSuresh A SinghAmy C HenriciStuart S SumidaPublished in: Royal Society open science (2021)
Heterodonty is a hallmark of early mammal evolution that originated among the non-mammalian therapsids by the Middle Permian. Nonetheless, the early evolution of heterodonty in basal synapsids is poorly understood, especially in the mandibular dentition. Here, we describe a new synapsid, Shashajaia bermani gen. et sp. nov., based on a well-preserved dentary and jaw fragments from the Carboniferous-Permian Halgaito Formation of southern Utah. Shashajaia shares with some sphenacodontids enlarged (canine-like) anterior dentary teeth, a dorsoventrally deep symphysis and low-crowned, subthecodont postcanines having festooned plicidentine. A phylogenetic analysis of 20 taxa and 154 characters places Shashajaia near the evolutionary divergence of Sphenacodontidae and Therapsida (Sphenacodontoidea). To investigate the ecomorphological context of Palaeozoic sphenacodontoid dentitions, we performed a principal component analysis based on two-dimensional geometric morphometrics of the mandibular dentition in 65 synapsids. Results emphasize the increasing terrestrialization of predator-prey interactions as a driver of synapsid heterodonty; enhanced raptorial biting (puncture/gripping) aided prey capture, but this behaviour was probably an evolutionary antecedent to more complex processing (shearing/tearing) of larger herbivore prey by the late Early to Middle Permian. The record of Shashajaia supports the notion that the predatory feeding ecology of sphenacodontoids emerged in palaeotropical western Pangea by late Carboniferous times.