Login / Signup

Density Functional Theory Calculations Decipher Complex Reaction Pathways of 6:2 Fluorotelomer Sulfonate to Perfluoroalkyl Carboxylates Initiated by Hydroxyl Radical.

Yanyan ZhangJinxia LiuSubhasis GhoshalAudrey Moores
Published in: Environmental science & technology (2021)
6:2 Fluorotelomer sulfonate (6:2 FTSA) is a ubiquitous environmental contaminant belonging to the family of per- and polyfluoroalkyl substances. Previous studies showed that hydroxyl radical (•OH) efficiently transforms 6:2 FTSA into perfluoroalkyl carboxylates (PFCAs) of different chain lengths (C2-C7), yet the reaction mechanisms were not elucidated. This study used density functional theory (DFT) calculations to map the entire reaction path of 6:2 FTSA initiated by •OH and experimentally verified the theoretical results. Optimal reaction pathways were obtained by comparing the rate constants calculated from the transition-state theory. We found that 6:2 FTSA was first transformed to C7 PFCA and C6F13•; C6F13• was then further reacted to C2-C6 PFCAs. The parallel addition of •OH and O2 to CnF2n+1• was essential to producing C2-C6 PFCAs. The critical step is the generation of alkoxyl radicals, which withdraw electrons from the adjacent C-C groups to result in chain cleavage. The validity of the calculated optimal reaction pathways was further confirmed by the consistency with our experimental data in the aspects of O2 involvement, identified intermediates, and the final PFCA profile. This study provides valuable insight into the transformation of polyfluoroalkyl substances containing aliphatic carbons in •OH-based oxidation processes.
Keyphrases
  • density functional theory
  • molecular dynamics
  • electron transfer
  • electronic health record
  • machine learning
  • risk assessment
  • molecular dynamics simulations
  • artificial intelligence
  • deep learning
  • data analysis