Deep neural networks integrating genomics and histopathological images for predicting stages and survival time-to-event in colon cancer.
Olalekan OgundipeZeyneb KurtWai Lok WooPublished in: PloS one (2024)
The genomics-only and integrated input features return Area Under Curve-Receiver Operating Characteristic curve (AUC-ROC) of 0.97 compared with AUC-ROC of 0.78 obtained when only image features are used for the stage's classification. A further analysis of prediction accuracy using the confusion matrix shows that the integrated features have a weakly improved accuracy of 0.08% more than the accuracy obtained with genomics features. Also, the extracted features were used to split the patients into low or high-risk survival groups. Among the 2,700 fused features, 1,836 (68%) features showed statistically significant survival probability differences in aggregating samples into either low or high between the two risk survival groups. Availability and Implementation: https://github.com/Ogundipe-L/EDCNN.