Login / Signup

A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images.

Salim ArslanJulian SchmidtCher BassDebapriya MehrotraAndre GeraldesShikha SinghalJulius HenseXiusi LiPandu Raharja-LiuOscar MaiquesJakob Nikolas KatherPahini Pandya
Published in: Communications medicine (2024)
The results demonstrate that DL holds promise to predict a wide range of biomarkers across the omics spectrum using only H&E-stained histological slides of solid tumors. This paves the way for accelerating diagnosis and developing more precise treatments for cancer patients.
Keyphrases
  • deep learning
  • convolutional neural network
  • papillary thyroid
  • artificial intelligence
  • big data
  • machine learning
  • clinical practice
  • single cell
  • squamous cell
  • optical coherence tomography
  • lymph node metastasis