Chemical-Free Recycling of Cathode Material and Aluminum Foil from Waste Lithium-Ion Batteries by Combining Plasma and Ultrasonic Technology.
Quanwei ChenYi GuoXin LaiXuebing HanXiang LiuLanguang LuMinggao OuyangYuejiu ZhengPublished in: ACS applied materials & interfaces (2024)
With the rapid demand for lithium-ion batteries due to the widespread application of electric vehicles, a significant amount of battery electrode pieces requiring urgent treatment are generated during battery production and disposal. The strong bonding caused by the presence of binders makes it challenging to achieve thorough separation between the cathode active materials and Al foil, posing difficulties in efficient battery material recycling. To address this issue, a plasma-ultrasonically combined physical separation method is proposed in this study. This method utilizes plasma-generated excited-state radicals assisted by ultrasonic waves to separate active materials and current collectors. The results indicate that the binders are effectively decomposed under plasma treatment at 13.56 MHz, 100 W, and 10 min in an oxygen atmosphere, resulting in a separation efficiency of 96.8 wt % for the cathode materials. Characterization results demonstrate that the morphology, crystal structure, and chemical composition of the recycled cathode active materials remain unchanged, facilitating subsequent direct restoration and hydrometallurgical recycling. Simultaneously, the Al foil is also completely recycled for subsequent reuse. Compared with traditional methods of separating cathode active materials and aluminum foil, the method proposed in this study has significant economic and environmental potential. It can promote the recycling of battery materials and the development of sustainable transportation.