Login / Signup

Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring.

Andrea VanniniLuca PaganoMarco BartoliRiccardo FedeliAlessio MalcevschiMichele SidoliGiacomo MagnaniDaniele PontiroliMauro RiccòMarta MarmiroliAlessandro PetragliaStefano Loppi
Published in: Toxics (2024)
Biochar (BC) boasts diverse environmental applications. However, its potential for environmental biomonitoring has, surprisingly, remained largely unexplored. This study presents a preliminary analysis of BC's potential as a biomonitor for the environmental availability of ionic Cd, utilizing the lichen Evernia prunastri (L.) Ach. as a reference organism. For this purpose, the lichen E. prunastri and two types of wood-derived biochar, biochar 1 (BC1) and biochar 2 (BC2), obtained from two anonymous producers, were investigated for their ability to accumulate, or sequester and subsequently release, Cd when exposed to Cd-depleted conditions. Samples of lichen and biochar (fractions between 2 and 4 mm) were soaked for 1 h in a solution containing deionized water (control), 10 µM, and 100 µM Cd 2+ (accumulation phase). Then, 50% of the treated samples were soaked for 24 h in deionized water (depuration phase). The lichen showed a very good ability to adsorb ionic Cd, higher than the two biochar samples (more than 46.5%), and a weak ability to release the metal (ca. 6%). As compared to the lichen, BC2 showed a lower capacity for Cd accumulation (-48%) and release (ca. 3%). BC1, on the other hand, showed a slightly higher Cd accumulation capacity than BC2 (+3.6%), but a release capacity similar to that of the lichen (ca. 5%). The surface area and the cation exchange capacity of the organism and the tested materials seem to play a key role in their ability to accumulate and sequester Cd, respectively. This study suggests the potential use of BC as a (bio)monitor for the presence of PTEs in atmospheric depositions and, perhaps, water bodies.
Keyphrases
  • air pollution
  • heavy metals
  • sewage sludge
  • anaerobic digestion
  • nk cells
  • human health
  • risk assessment
  • organic matter
  • plant growth
  • ionic liquid
  • mass spectrometry
  • life cycle
  • single molecule
  • protein kinase