Login / Signup

Mechanical properties of lithic raw materials from Kazakhstan: Comparing chert, shale, and porphyry.

Abay NamenRadu IovitaKlaus G NickelAristeidis VarisZhaken TaimagambetovPatrick Schmidt
Published in: PloS one (2022)
The study of lithic raw material quality has become one of the major interpretive tools to investigate the raw material selection behaviour and its influence to the knapping technology. In order to make objective assessments of raw material quality, we need to measure their mechanical properties (e.g., fracture resistance, hardness, modulus of elasticity). However, such comprehensive investigations are lacking for the Palaeolithic of Kazakhstan. In this work, we investigate geological and archaeological lithic raw material samples of chert, porphyry, and shale collected from the Inner Asian Mountain Corridor (henceforth IAMC). Selected samples of aforementioned rocks were tested by means of Vickers and Knoop indentation methods to determine the main aspect of their mechanical properties: their indentation fracture resistance (a value closely related to fracture toughness). These tests were complemented by traditional petrographic studies to characterise the mineralogical composition and evaluate the level of impurities that could have potentially affected the mechanical properties. The results show that materials, such as porphyry possess fracture toughness values that can be compared to those of chert. Previously, porphyry was thought to be of lower quality due to the anisotropic composition and coarse feldspar and quartz phenocrysts embedded in a silica rich matrix. However, our analysis suggests that different raw materials are not different in terms of indentation fracture resistance. This work also offers first insight into the quality of archaeological porphyry that was utilised as a primary raw material at various Upper Palaeolithic sites in the Inner Asian Mountain Corridor from 47-21 ka cal BP.
Keyphrases
  • hip fracture
  • quality improvement
  • atomic force microscopy
  • molecular dynamics