Login / Signup

Additive and Lithographic Manufacturing of Biomedical Scaffold Structures Using a Versatile Thiol-Ene Photocurable Resin.

Michael KainzStjepan PerakGerald StubauerSonja KoppSebastian KauschederJulia HemetzbergerAdrián Martínez CendreroAndrés Díaz LantadaDisha TupeZoltan MajorDominik HanetsederVeronika HruschkaSusanne WolbankDarja Marolt PresenMichael M MuehlbergerElena Guillén
Published in: Polymers (2024)
Additive and lithographic manufacturing technologies using photopolymerisation provide a powerful tool for fabricating multiscale structures, which is especially interesting for biomimetic scaffolds and biointerfaces. However, most resins are tailored to one particular fabrication technology, showing drawbacks for versatile use. Hence, we used a resin based on thiol-ene chemistry, leveraging its numerous advantages such as low oxygen inhibition, minimal shrinkage and high monomer conversion. The resin is tailored to applications in additive and lithographic technologies for future biofabrication where fast curing kinetics in the presence of oxygen are required, namely 3D inkjet printing, digital light processing and nanoimprint lithography. These technologies enable us to fabricate scaffolds over a span of six orders of magnitude with a maximum of 10 mm and a minimum of 150 nm in height, including bioinspired porous structures with controlled architecture, hole-patterned plates and micro/submicro patterned surfaces. Such versatile properties, combined with noncytotoxicity, degradability and the commercial availability of all the components render the resin as a prototyping material for tissue engineers.
Keyphrases
  • tissue engineering
  • high resolution
  • body mass index
  • smoking cessation
  • escherichia coli
  • physical activity
  • mass spectrometry
  • current status
  • perovskite solar cells