Login / Signup

Changes in levels of legacy and emerging organophosphorus flame retardants and plasticizers in indoor dust from a former e-waste recycling area in South China: 2013-2017.

Bin TangChristina ChristiaXiao-Jun LuoAdrian CovaciGiulia PomaBi-Xian Mai
Published in: Environmental science and pollution research international (2022)
To assess the impacts of e-waste regulations on environmental pollution, the levels, compositions, and human exposure assessment of organophosphorus flame retardants (PFRs), emerging PFRs (ePFRs), phthalate esters (PAEs), and alternative plasticizers (APs) were investigated in indoor dust samples collected from homes in a former e-waste dismantling area in 2013 and in 2017, 4 years after the implementation of legislation and regulations governing e-waste dismantling activities in this area. The median concentrations of ΣPFRs, ΣePFRs, ΣPAEs, and ΣAPs in dust decreased from 5680, 1650, 167,200, and 140,600 ng/g in 2013 to 1210, 476, 95,000, and 45,300 ng/g in 2017, respectively, suggesting that the national and local regulations prohibiting primitive e-waste dismantling activities is effective in mitigating the pollution status for these chemicals. In the analyzed dust samples, tris(1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), resorcinol bis(diphenylphosphate) (RDP), and bisphenol A-bis(diphenyl phosphate) (BDP) were the major PFRs/ePFRs, contributing to 77% and 76% of the total PFRs/ePFRs in 2013 and 2017, respectively. Di(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DINP), di-iso-decyl phthalate (DIDP), and di-n-butyl phthalate (DNBP) were the major PAEs/APs, with contributions of 89% and 95% for the total PAEs/APs in 2013 and 2017, respectively. The results of the human exposure assessment demonstrated that exposure to these levels of the target chemicals via dust ingestion and dermal contact was unlikely to cause health concerns for local residents.
Keyphrases