Downregulation of HMGB1 by miR-34a is sufficient to suppress proliferation, migration and invasion of human cervical and colorectal cancer cells.
Karthik Subramanian ChandrasekaranAnusha SathyanarayananDevarajan KarunagaranPublished in: Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine (2016)
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein known to be highly expressed in human cervical (CaCx) and colorectal (CRC) cancers, and sustained high levels of HMGB1 contribute to tumourigenesis and metastasis. HMGB1-targeted cancer therapy is of recent interest, and there are not many studies on miRNA-mediated HMGB1 regulation in these cancers. Since miRNA-based therapeutics for cancer is gaining importance in recent years, it was of interest to predict miRNAs targeting HMGB1. Based on the identification of a potential miR-34a response element in HMGB1-3' untranslated region (3'UTR) and an inverse correlation between HMGB1 and miR-34a expression levels in CaCx and CRC tissues, from a subset of the local population as well as a large sampling from TCGA database, experiments were performed to validate HMGB1 as a direct target of miR-34a in CaCx and CRC cells. Ectopic expression of miR-34a decreased the wild-type HMGB1-3'UTR luciferase activity but not that of its mutant in 3'UTR luciferase assays. While forced expression of miR-34a in CaCx and CRC cells inhibited HMGB1 mRNA and protein levels, proliferation, migration and invasion, inhibition of endogenous miR-34a enhanced these tumourigenic properties. siRNA-mediated HMGB1 suppression imitated miR-34a expression in reducing proliferation and metastasis-related events. Combined with the disparity in expression of miR-34a and HMGB1 in clinical specimens, the current findings would help in not only understanding the complexity of miRNA-target regulatory mechanisms but also in designing novel therapeutic interventions in CaCx and CRC.