Plant-Derived Substances in the Fight Against Infections Caused by Candida Species.
Ibeth Guevara-LoraGrazyna BrasJustyna Karkowska-KuletaMiriam González-GonzálezKinga CeballosWiktoria SidloMaria Rapała-KozikPublished in: International journal of molecular sciences (2020)
Yeast-like fungi from the Candida genus are predominantly harmless commensals that colonize human skin and mucosal surfaces, but under conditions of impaired host immune system change into dangerous pathogens. The pathogenicity of these fungi is typically accompanied by increased adhesion and formation of complex biofilms, making candidal infections challenging to treat. Although a variety of antifungal drugs have been developed that preferably attack the fungal cell wall and plasma membrane, these pathogens have acquired novel defense mechanisms that make them resistant to standard treatment. This causes an increase in the incidence of candidiasis and enforces the urgent need for an intensified search for new specifics that could be helpful, alone or synergistically with traditional drugs, for controlling Candida pathogenicity. Currently, numerous reports have indicated the effectiveness of plant metabolites as potent antifungal agents. These substances have been shown to inhibit growth and to alter the virulence of different Candida species in both the planktonic and hyphal form and during the biofilm formation. This review focuses on the most recent findings that provide evidence of decreasing candidal pathogenicity by different substances of plant origin, with a special emphasis on the mechanisms of their action. This is a particularly important issue in the light of the currently increasing frequency of emerging Candida strains and species resistant to standard antifungal treatment.