Login / Signup

Nanoluciferase-Based Method for Detecting Gene Expression in Caenorhabditis elegans.

Ivana SfarcicTheresa BuiErin C DanielsEmily R Troemel
Published in: Genetics (2019)
Genetic reporters such as the green fluorescent protein (GFP) can facilitate measurement of promoter activity and gene expression. However, animal autofluorescence limits the sensitivity of GFP and other fluorescent reporters in whole-animal settings like in the nematode Caenorhabditis elegans Here, we present a highly sensitive Nanoluciferase (NanoLuc)-based method in a multiwell format to detect constitutive and inducible gene expression in C . elegans We optimize detection of bioluminescent signals from NanoLuc in C. elegans and show that it can be detected at 400,000-fold over background in a population of 100 animals expressing intestinal NanoLuc driven by the vha-6 promoter. We can reliably detect signal in single vha-6p::Nanoluc-expressing worms from all developmental stages. Furthermore, we can detect signal from a 1/100 dilution of lysate from a single vha-6p::Nanoluc-expressing adult and from a single vha-6p::Nanoluc-expressing adult "hidden" in a pool of 5000 N2 wild-type animals. We also optimize various steps of this protocol, which involves a lysis step that can be performed in minutes. As a proof-of-concept, we used NanoLuc to monitor the promoter activity of the pals-5 stress/immune reporter and were able to measure 300- and 50-fold increased NanoLuc activity after proteasome blockade and infection with microsporidia, respectively. Altogether, these results indicate that NanoLuc provides a highly sensitive genetic reporter for rapidly monitoring whole-animal gene expression in C. elegans.
Keyphrases