Login / Signup

The Cm14-3-3μ protein and CCT transcription factor CmNRRa delay flowering in chrysanthemum.

Hua ChengJiaxin ZhangYu ZhangChaona SiJuanjuan WangZheng GaoPeipei CaoPeilei ChengYuehui HeSumei ChenFadi ChenJiafu Jiang
Published in: Journal of experimental botany (2023)
Floral transition from vegetative to reproductive growth is pivotal in the plant life cycle. NUTRITION RESPONSE AND ROOT GROWTH (OsNRRa) as a CONSTANS, CONSTANS-LIKE, TOC1 (CCT) domain protein delays flowering in rice and an orthologous gene CmNRRa inhibits flowering in chrysanthemum; however, the mechanism remains unknown. In this study, using yeast two-hybrid screening, we identified the 14-3-3 family member Cm14-3-3µ as a CmNRRa-interacting protein. Biochemical assays using a combination of bimolecular fluorescence complementation (BiFC), pull-down, and Co-immunoprecipitation (Co-IP) were performed to confirm the physical interaction between CmNRRa and Cm14-3-3µ in chrysanthemum. In addition, expression analysis showed that CmNRRa, but not Cm14-3-3µ, responded to the diurnal rhythm, whereas both genes were highly expressed in the leaves. Moreover, the function in flowering time regulation of Cm14-3-3µ is similar to that of CmNRRa. Furthermore, CmNRRa repressed chrysanthemum FLOWERING LOCUS T-like 3 (CmFTL3) and APETALA 1 (AP1)/FRUITFULL (FUL)-like gene (CmAFL1), but induced TERMINAL FLOWER1 (CmTFL1) directly by binding to their promoters. Cm14-3-3µ enhanced the ability of CmNRRa to regulate the expression of these genes. These findings suggest that there is a synergistic relationship between CmNRRa and Cm14-3-3µ in flowering repression in chrysanthemum.
Keyphrases