Login / Signup

Silymarin-Loaded, Lactobionic Acid-Conjugated Porous PLGA Nanoparticles Induce Apoptosis in Liver Cancer Cells.

Priyanka UpadhyayMousumi BhattacharjeeSaurav BhattacharyaManisha AhirArghya AdhikaryPrasun Patra
Published in: ACS applied bio materials (2020)
HepG2 cells (HCC), characterized by epithelial-like morphology, high proliferation rates, and nontumorigenicity, require cost-effective and efficient treatment. Silymarin, a flavonoid extract of S ilybum marianum, is effective in the treatment of HCC. Here, we have reported a comparative anticancer study of the well-characterized nanoformulations of lactobionic acid-adorned porous PLGA-encapsulated silymarin (LA-PLGA-Sil) with only porous PLGA-encapsulated silymarin (PLGA-Sil) against HepG2 cells. Treatment of HepG2 cells with LA-PLGA-Sil produced a significant deterioration in cell viability at an essentially low dose as compared with PLGA-Sil, due to the adorned lactobionic acid moiety, which results in better targeting. p53, a tumor suppressor gene, essentially initiates apoptosis in cells procuring wild-type p53 (p53 +/+). In our report, treatment of HepG2 cells (p53 +/+) with LA-PLGA-Sil activated p53, which in turn inhibited the proliferation of cells by instigating cell-cycle arrest and apoptosis in a concentration-dependent manner and simultaneously stabilized the nuclear translocation of NFκB-p65. To explore the effect of LA-PLGA-Sil on the expression of microRNA, we observed that LA-PLGA-Sil markedly upregulated the miR-29b in human HCC cells. Reactivation of the p53 gene by miR-29b targeted Bcl-2 and triggered the sequential activation of mediators such as proapoptotic Bax protein, release of cytochrome c , and the activation of caspase proteins (caspase-3 and caspase-9). Furthermore, the overexpression of NFκB-p65 in HepG2 cells reversed the repression, and this stabilization effect of LA-PLGA-Sil on the nuclear translocation of p65 led to the significant downregulation of miR-29b and successively decreased the p53 expression in LA-PLGA-Sil-treated cells, thereby providing a survival mechanism to HepG2. In entirety, our study demonstrated the extensive potential of LA-PLGA-Sil to instigate the cell death of HepG2 cells via apoptosis by targeting the miR-29b/p53 axis through the stabilization of NFκB. It also impaired the migratory activity of HepG2 cells and thereby furnished a comprehensive way to HCC therapeutic treatment.
Keyphrases