Isotachophoretic Fluorescence in Situ Hybridization of Intact Bacterial Cells.
Sui C PhungJoan M CabotMirek MackaShane M PowellRosanne M GuijtMichael C BreadmorePublished in: Analytical chemistry (2017)
A counter-pressure-assisted capillary isotachophoresis method in combination with a sieving matrix and ionic spacer was used to perform in-line fluorescence in situ hybridization (FISH) of bacterial cells. A high concentration of sieving matrix (1.8% w/v HEC) was introduced at one end of the capillary, and the bacterial cells were suspended in the spacer electrolyte for injection. Using a 2 min injection with 18 psi counter-pressure, 50% of the cells injected into the capillary were hybridized with the fluorescently labeled oligonucleotide, and the excess unhybridized probe was separated from the hybridized cell-probe complexes in a two-stage ITP method. With an LOD (6.0 × 104 cells/mL) comparable with the CE analysis of a sample processed using an off-line FISH protocol, the total analysis time was reduced from 2.5 h to 30 min. Provided the appropriate probe is selected, this approach can be used for specific detection of bacterial cells in aqueous samples.