Login / Signup

Prenylation and Dehydrogenation of a C2-Reversely Prenylated Diketopiperazine as a Branching Point in the Biosynthesis of Echinulin Family Alkaloids in Aspergillus ruber.

Jonas NiesShu-Ming Li
Published in: ACS chemical biology (2020)
The echinulin family alkaloids can be grouped into three series depending on the number of the exo double bonds adjacent to the diketopiperazine core structure. Heterologous expression of the putative echinulin biosynthetic gene cluster from Aspergillus ruber in Aspergillus nidulans led to accumulation of echinulin without a double bond and neoechinulin A with one double bond (Δ10) as major products. Their analogues with a different number of prenyl moieties were detected as minor products. Neoechinulin B and analogues with two double bonds (Δ10,14) were not observed. Feeding experiments confirmed that the cytochrome P450 enzyme EchP450 only catalyzes the formation of the double bond between C10 and C11. Coincubation and substrate concentration dependent assays with the prenyltransferase EchPT2 revealed that the reversely C2-prenylated preechinulin without a double bond is a much better substrate than neoechinulin A. These results prove that preechinulin serves as a common substrate for the formation of echinulin by two regiospecific prenylation steps with EchPT2 or for EchP450 to introduce one double bond and subsequent prenylations with low regioselectivity.
Keyphrases
  • poor prognosis
  • high throughput
  • molecular docking
  • cell wall
  • transition metal
  • gene expression
  • long non coding rna
  • dna methylation
  • transcription factor
  • binding protein