Genome-wide characterization of circulating metabolic biomarkers.
Minna K KarjalainenSavita KarthikeyanClare Oliver-WilliamsEeva SlizElias AllaraWing Tung FungPraveen SurendranWeihua ZhangPekka JousilahtiKati KristianssonVeikko V SalomaaMatt GoodwinDavid A HughesMichael BoehnkeLilian Fernandes SilvaXianyong YinAnubha MahajanMatthew J NevilleNatalie R van ZuydamRenée de MutsertRuifang Li-GaoDennis O Mook-KanamoriAyşe DemirkanJun LiuRaymond NoordamStella TrompetZhengming ChenChristiana KartsonakiLiming LiKuang LinFiona A HagenbeekJouke- Jan HottengaRené PoolMohammad Arfan IkramJoyce van MeursToomas HallerYuri MilaneschiMika KähönenPashupati P MishraPeter K JoshiErin Macdonald-DunlopMassimo ManginoJonas ZiererIlhan E AcarCarel B HoyngYara T E LechanteurLude FrankeAlexander KurilshikovAlexandra ZhernakovaMarian BeekmanErik Ben van den AkkerIvana KolcicOzren PolasekIgor RudanChristian GiegerMelanie WaldenbergerFolkert W Asselbergsnull nullnull nullnull nullCaroline HaywardJingyuan FuAnneke I den HollanderCristina MenniTimothy D SpectorJames F WilsonTerho LehtimäkiOlli T RaitakariBrenda W J H PenninxTonu EskoRobin G WaltersJohan Wouter JukemaNaveed SattarMohsen GhanbariKo Willems van DijkFredrik KarpeMark I McCarthyMarkku LaaksoMarjo-Riitta JarvelinNicholas John TimpsonMarkus PerolaJaspal S KoonerJohn C ChambersCornelia M Van DuijnPieternella Eline SlagboomDorret I BoomsmaJohn DaneshMika Ala-KorpelaAdam S ButterworthJohannes KettunenPublished in: Nature (2024)
Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism 1-7 . This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases 8-11 . Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.
Keyphrases
- genome wide
- copy number
- dna methylation
- genome wide association study
- genome wide association
- high throughput
- healthcare
- blood pressure
- endothelial cells
- single cell
- gene expression
- mental health
- machine learning
- drug induced
- preterm birth
- fatty acid
- artificial intelligence
- single molecule
- transcription factor
- arterial hypertension