Transcriptome changes associated with fat deposition in the longissimus thoracis of Korean cattle following castration.
Sang Weon NaSeung Ju ParkSoo Jong HongMyunggi BaikPublished in: Journal of animal physiology and animal nutrition (2020)
The castration of bulls increases the intramuscular fat (IMF) content in skeletal muscle. However, the biological processes of IMF accumulation in skeletal muscle after castration are not completely understood at the molecular level. This study examined the global transcriptomic changes in the longissimus thoracis muscle (LT) of bulls following castration using RNA sequencing (RNA-Seq) and identified new genes or pathways associated with beef quality. Ten bulls and 10 steers castrated at 6 months of age were slaughtered at 26 and 32 months of age respectively. For transcriptome analysis, six LT samples from three bulls and three steers were selected based on age, carcass weight, carcass quantity and beef quality grades. Using RNA-Seq, transcriptomic profiles of the LT were compared between bulls and steers. In all, 640 of the 18,027 genes identified through RNA-Seq were differentially expressed genes (DEGs) between bulls and steers. Pathway analysis of these 640 DEGs showed significant (p < .05) changes in seven Kyoto Encyclopedia of Genes and Genomes pathways, and the most significant terms were complement and coagulation cascade pathways. The transcriptomic expression patterns of 10 genes in the complement and coagulation cascades were validated using all animals through quantitative real-time polymerase chain reaction analysis. In conclusion, transcriptome changes associated with the complement and coagulation cascade pathways provide novel insights into understanding molecular mechanisms responsible for IMF accumulation following castration in beef cattle.