Login / Signup

Using smartphone-GPS data to quantify human activity in green spaces.

Alessandro FilazzolaGarland XieKimberly BarrettAndrea DunnMarc T J JohnsonJames Scott MacIvor
Published in: PLoS computational biology (2022)
Cities are growing in density and coverage globally, increasing the value of green spaces for human health and well-being. Understanding the interactions between people and green spaces is also critical for biological conservation and sustainable development. However, quantifying green space use is particularly challenging. We used an activity index of anonymized GPS data from smart devices provided by Mapbox (www.mapbox.com) to characterize human activity in green spaces in the Greater Toronto Area, Canada. The goals of our study were to describe i) a methodological example of how anonymized GPS data could be used for human-nature research and ii) associations between park features and human activity. We describe some of the challenges and solutions with using this activity index, especially in the context of green spaces and biodiversity monitoring. We found the activity index was strongly correlated with visitation records (i.e., park reservations) and that these data are useful to identify high or low-usage areas within green spaces. Parks with a more extensive trail network typically experienced higher visitation rates and a substantial proportion of activity remained on trails. We identified certain land covers that were more frequently associated with human presence, such as rock formations, and find a relationship between human activity and tree composition. Our study demonstrates that anonymized GPS data from smart devices are a powerful tool for spatially quantifying human activity in green spaces. These could help to minimize trade-offs in the management of green spaces for human use and biological conservation will continue to be a significant challenge over the coming decades because of accelerating urbanization coupled with population growth. Importantly, we include a series of recommendations when using activity indexes for managing green spaces that can assist with biomonitoring and supporting sustainable human use.
Keyphrases
  • endothelial cells
  • induced pluripotent stem cells
  • pluripotent stem cells
  • electronic health record
  • machine learning
  • human health
  • risk assessment
  • big data
  • public health
  • artificial intelligence