Login / Signup

Fe3O4 Mesocrystals with Distinctive Magnetothermal and Nanoenzyme Activity Enabling Self-Reinforcing Synergistic Cancer Therapy.

Wenxian DuTianzhi LiuFengfeng XueXiaojun CaiQian ChenYuanyi ZhengHang-Rong Chen
Published in: ACS applied materials & interfaces (2020)
Magnetite (Fe3O4) nanoparticles have been extensively used in noninvasive cancer treatment, for example, magnetic hyperthermia (MH) and chemodynamic therapy (CDT). However, how to achieve a highly efficient MH-CDT synergistic therapy based only on a single component of Fe3O4 still remains a challenge. Herein, hollow Fe3O4 mesocrystals (MCs) are constructed via a modified solvothermal method. Owing to the distinctive magnetic property of the mesocrystalline structure, Fe3O4 MCs show excellent magnetothermal conversion efficiency with a specific absorption rate of 722 w g-1 at a Fe concentration of 0.6 mg mL-1, much higher than that of Fe3O4 polycrystals (PCs). Moreover, Fe3O4 MCs also exhibit higher peroxidase-like activity than Fe3O4 PCs, which may be ascribed to the higher ratio of Fe2+/Fe3+ and more oxygen defects in the Fe3O4 MCs. Detailed in vivo results confirm that Fe3O4 MCs can instantly initiate CDT by producing the detrimental •OH, and such boosted reactive oxygen levels not only induces cell apoptosis but also reduces the expression of heat shock proteins, thus enabling low-temperature-mediated MH. More importantly, the in situ rising temperature resulted from MH in turn facilitates CDT, thus achieving a self-augmented synergistic effect between MH and CDT.
Keyphrases