CYP2J2/EET reduces vulnerability to atrial fibrillation in chronic pressure overload mice.
Xuguang LiFeng ZhuWeidong MengFeng ZhangJiang HongGuobing ZhangFang WangPublished in: Journal of cellular and molecular medicine (2019)
Growing evidence has well established the protective effects of CYP2J2/EET on the cardiovascular system. The aim of the present study was to determine whether CYP2J2/EET has a preventive effect on atrial fibrillation (AF) and to investigate the underlying mechanisms. Wild-type mice were injected with or without AAV9-CYP2J2 before abdominal aortic constriction (AAC) operation. After 8 weeks, compared with wild-type mice, AAC mice display higher AF inducibility and longer AF durations, which were remarkably attenuated with AAV9-CYP2J2. Also, AAV9-CYP2J2 reduced atrial fibrosis area and the deposit of collagen-I/III in AAC mice, accompanied by the blockade of TGF-β/Smad-2/3 signalling pathways, as well as the recovery in Smad-7 expression. In vitro, isolated atrial fibroblasts were administrated with TGF-β1, EET, EEZE, GW9662, SiRNA Smad-7 and pre-MiR-21, and EET was demonstrated to restrain the differentiation of atrial fibroblasts largely dependent on Smad-7, due to the inhibition of EET on MiR-21. In addition, increased inflammatory cytokines, as well as activated NF-κB pathways induced by AAC surgery, were also significantly blunted by AAV9-CYP2J2 treatment. These effects of CYP2J2/EET were partially blocked by GW9662, the antagonist of PPAR-γ. In conclusion, this study revealed that CYP2J2/EET ameliorates atrial fibrosis through modulating atrial fibroblasts activation by disinhibition of MiR-21 on Smad-7, and attenuates atrial inflammatory response by repressing NF-κB pathways, reducing the vulnerability to AF, and CYP2J2/EET exerts its role at least partially through PPAR-γ activation. Our findings might provide a novel upstream therapeutic strategy for AF.
Keyphrases
- atrial fibrillation
- wild type
- catheter ablation
- left atrial
- transforming growth factor
- oral anticoagulants
- left atrial appendage
- direct oral anticoagulants
- epithelial mesenchymal transition
- heart failure
- inflammatory response
- high fat diet induced
- signaling pathway
- long non coding rna
- cell proliferation
- percutaneous coronary intervention
- oxidative stress
- lps induced
- insulin resistance
- type diabetes
- spinal cord injury
- extracellular matrix
- poor prognosis
- left ventricular
- abdominal aortic
- nuclear factor
- lipopolysaccharide induced
- drug delivery
- single cell
- immune response
- pi k akt
- venous thromboembolism