Robustness of risk-based allocation of resources for disease prevention.
Mitchell H GailDavid PeePublished in: Statistical methods in medical research (2020)
Risk models for disease incidence can be useful for allocating resources for disease prevention if risk assessment is not too expensive. Assume there is a preventive intervention that should be given to everyone, but preventive resources are limited. We optimize risk-based prevention strategies and investigate robustness to modeling assumptions. The optimal strategy defines the proportion of the population to be given risk assessment and who should be offered intervention. The optimal strategy depends on the ratio of available resources to resources needed to intervene on everyone, and on the ratio of the costs of risk assessment to intervention. Risk assessment is not recommended if it is too expensive. Preventive efficiency decreases with decreasing compliance to risk assessment or intervention. Risk measurement error has little effect nor does misspecification of the risk distribution. Ignoring population substructure has small effects on optimal prevention strategy but can lead to modest over- or under-spending. We give conditions under which ignoring population substructure has no effect on optimal strategy. Thus, a simple one-population model offers robust guidance on prevention strategy but requires data on available resources, costs of risk assessment and intervention, population risk distribution, and probabilities of acceptance of risk assessment and intervention.