A Facile Strategy To Prepare Smart Coatings with Autonomous Self-Healing and Self-Reporting Functions.
Shusheng ChenTing HanYing ZhaoWenjun LuoZhong ZhangHaibin SuBen-Zhong TangJinglei YangPublished in: ACS applied materials & interfaces (2020)
Herein, we report a smart coating with autonomous self-healing and self-reporting functions by simple integration of one-component microcapsules into the matrix without external intervention. The microcapsules containing hexamethylene diisocyanate (HDI) solution of aggregation-induced emission luminogens (AIEgens) were synthesized, and their properties, such as their composition, thermal stability, morphology, and damage-indicating ability, were investigated systematically. The AIEgen/HDI microcapsule-embedded coatings display adaptive self-repair of scratches and simultaneous high-contrast indication of the healed damage. Two commercialized AIEgens, tetraphenylethylene (TPE) and its derivative with dimethoxyl and benzylidene-methyloxazolone moieties (DM-TPE-BMO), were utilized as examples to demonstrate the feasibility of this concept in diverse polymer matrixes (including blue autofluorescent matrixes). It was found that the content of AIEgens can even be lowered to 0.05 wt %. This facile, economical, and feasible strategy toward the dual functions of self-repairing and self-sensing provides a new route for enhancing the longevity and reliability of polymer coatings, which is appealing and of great importance in practical applications.